Luminescent Lanthanide (III) (Ln(III)) bioprobes (LLBs) have been extensively used in the last two decades as intracellular molecular probes in bio-imaging for the efficient revelation of analytes, to signal intracellular events (enzymes/protein activity, antigen-antibody interaction), target specific organelles, and determine parameters of particular biophysical interest, to gain important insights on pathologies or diseases. The choice of using a luminescent Ln(III) coordination compound with respect to a common organic fluorophore is intimately connected to how their photophysical sensitization (antenna effect) can be finely tuned and especially triggered to respond (even quantitatively) to a certain biophysical event, condition or analyte. While there are other reviews focused on how to design chromophoric ligands for an efficient sensitization of Ln(III) ions, both in the visible and NIR region, this review is application-driven: it is a small collection of particularly interesting examples where the LLB's emissive information is acquired by imaging the emission intensity and/or the fluorescence lifetime (fluorescence lifetime imaging microscopy, FLIM).
View Article and Find Full Text PDFBackground: Despite the importance of Ultrasound-guided Regional Anaesthesia (UGRA) in Emergency Medicine (EM), there is significant variability in UGRA training among emergency physicians. We recently developed a one-day (8 h), simulation-based UGRA course, specifically tailored to help emergency physicians to integrate these skills into their clinical practice.
Methods: In this pre/post intervention study, emergency physicians attended a course consisting of a 4-hour teaching on background knowledge and a practical part structured as follows: a scanning session on a healthy individual; a needling station with an ex-vivo model (turkey thighs); a simulation-based learning experience on local anaesthetic toxicity (LAST); a session on the UGRA simulator BlockSim™.
Recently, naturally occurring linear 1,4-glycans have attracted remarkable attention for their activity in cancer and neurodegenerative disease treatment. Classical chemical synthetic strategies for linear 1,4-oligosaccharides are considerably time-consuming due to orthogonal protection/deprotection, the introduction of leaving groups, and various forms of activation of the glycosylation reaction. Herein, we present a new one-pot microwave-activated reiterative assembly of glycal-derived vinyl epoxides in an uncatalyzed substrate-dependent stereospecific process for the preparation of both β-1,4-d-Gulo and α-1,4-d-Manno oligosaccharides.
View Article and Find Full Text PDFOver the last few years, radiation therapy (RT) techniques have evolved very rapidly, with the aim of conforming high-dose volume tightly to a target. Although to date CT is still considered the imaging modality for target delineation, it has some known limited capabilities in properly identifying pathologic processes occurring, for instance, in soft tissues. This limitation, along with other advantages such as dose reduction, can be overcome using magnetic resonance imaging (MRI), which is increasingly being recognized as a useful tool in RT clinical practice.
View Article and Find Full Text PDF