Acetaminophen-induced liver toxicity is the most frequent precipitating cause of acute liver failure and liver transplant, but contemporary medical practice has mainly focused on patient management after a liver injury has been induced. An integrative genetic, transcriptional, and two-dimensional NMR-based metabolomic analysis performed using multiple inbred mouse strains, along with knowledge-based filtering of these data, identified betaine-homocysteine methyltransferase 2 (Bhmt2) as a diet-dependent genetic factor that affected susceptibility to acetaminophen-induced liver toxicity in mice. Through an effect on methionine and glutathione biosynthesis, Bhmt2 could utilize its substrate (S-methylmethionine [SMM]) to confer protection against acetaminophen-induced injury in vivo.
View Article and Find Full Text PDFBenzothiazine-substituted tetramic acids were discovered as highly potent non-nucleoside inhibitors of HCV NS5B polymerase. X-ray crystallography studies confirmed the binding mode of these inhibitors with HCV NS5B polymerase. Rational optimization of time dependent inactivation of CYP 3A4 and clearance was accomplished by incorporation of electron-withdrawing groups to the benzothiazine core.
View Article and Find Full Text PDFBackground: Simplified and cost-effective methods for the detection and quantification of nucleic acid targets are still a challenge in molecular diagnostics.
Methods: Luminescent oxygen channeling assay (LOCI(TM)) latex particles can be conjugated to synthetic oligodeoxynucleotides and hybridized, via linking probes, to different DNA targets. These oligomer-conjugated LOCI particles survive thermocycling in a PCR reaction and allow quantified detection of DNA targets in both real-time and endpoint formats.
1. The distribution, pharmacology and effects of neurodegenerative diseases on 5-HT4 receptors in human brain have been characterized in vitro. 2.
View Article and Find Full Text PDF