Publications by authors named "S Zirah"

Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a structurally diverse group of natural products that bacteria employ in their survival strategies. Herein, we characterized the structure, the biosynthetic pathway, and the mode of action of a RiPP family called bufferins. With thousands of homologous biosynthetic gene clusters throughout the bacterial phylogenetic tree, bufferins form by far the largest family of RiPPs modified by multinuclear nonheme iron-dependent oxidases (MNIO, DUF692 family).

View Article and Find Full Text PDF
Article Synopsis
  • Microcins are antimicrobial peptides with diverse structures and actions that specifically target closely related bacterial strains, making them a potential alternative to traditional antibiotics by minimizing the risk of resistance spread and harm to beneficial bacteria.
  • A study examined resistance mechanisms to four types of microcins in a collection of 54 bacterial strains, finding that many resistant strains had mutations in genes critical for microcin uptake and function.
  • While a genome-wide association study did not show strong links, some resistance-associated genes were identified relating to stress responses, biofilm formation, transport, and immunity, along with metabolic pathway mutations in resistant strains.
View Article and Find Full Text PDF

Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide.

View Article and Find Full Text PDF

We report the first large-scale palaeoproteomics research on eastern and southern African zooarchaeological samples, thereby refining our understanding of early caprine (sheep and goat) pastoralism in Africa. Assessing caprine introductions is a complicated task because of their skeletal similarity to endemic wild bovid species and the sparse and fragmentary state of relevant archaeological remains. Palaeoproteomics has previously proved effective in clarifying species attributions in African zooarchaeological materials, but few comparative protein sequences of wild bovid species have been available.

View Article and Find Full Text PDF

Halophilic microorganisms have long been known to survive within the brine inclusions of salt crystals, as evidenced by the change in color for salt crystals containing pigmented halophiles. However, the molecular mechanisms allowing this survival has remained an open question for decades. While protocols for the surface sterilization of halite (NaCl) have enabled isolation of cells and DNA from within halite brine inclusions, "-omics" based approaches have faced two main technical challenges: (1) removal of all contaminating organic biomolecules (including proteins) from halite surfaces, and (2) performing selective biomolecule extractions directly from cells contained within halite brine inclusions with sufficient speed to avoid modifications in gene expression during extraction.

View Article and Find Full Text PDF