Publications by authors named "S Zalles"

Detection of methylation patterns in circulating tumor DNA (ctDNA) can offer a novel approach for cancer diagnostics given the unique signature for each tumor type. We developed a next-generation sequencing (NGS)-based assay targeting 32 CpG sites to detect colorectal cancer-specific ctDNA. NGS was performed on bisulfite-converted libraries and status dichotomization was done using median methylation ratios at all targets.

View Article and Find Full Text PDF

Potential applications of cell-free DNA (cfDNA)-based molecular profiling have used in patients with diverse malignant tumors. However, capturing all cfDNA that originates from tumor cells and identifying true variants present in this minute fraction remain challenges to the widespread application of cfDNA-based liquid biopsies in the clinical setting. In this study, we evaluate a systematic approach and identify key components of wet bench and bioinformatics strategies to address these challenges.

View Article and Find Full Text PDF

Introduction: Tumor mutation profiling is standard-of-care in lung carcinoma patients. However, comprehensive molecular profiling of small specimens, including core needle biopsy (CNB) and fine-needle aspiration (FNA) specimens, may often be inadequate due to limited tissue. Centrifuged FNA supernatants, which are typically discarded, have emerged recently as a novel liquid-based biopsy for molecular testing.

View Article and Find Full Text PDF

The emergence of highly sensitive molecular diagnostic approaches, such as droplet digital PCR, has allowed the accurate identification of low-frequency variant alleles in clinical specimens; however, the multiplex capabilities of droplet digital PCR for variant detection are inadequate. The incorporation of molecular barcodes or unique IDs into next-generation sequencing libraries through PCR has enabled the detection of low-frequency variant alleles across multiple genomic regions. However, rational library preparation and sequencing data analytic strategies that integrate molecular barcodes have rarely been applied to clinical settings.

View Article and Find Full Text PDF

Background: Molecular testing is recommended as an adjunct to improve the preoperative diagnosis of fine-needle aspiration (FNA) of thyroid nodules. Centrifuged supernatants from FNA samples, which are typically discarded, have recently emerged as a novel liquid-based biopsy for molecular testing. This study evaluates the use of thyroid FNA supernatants for detecting clinically relevant mutations.

View Article and Find Full Text PDF