Wolbachia manipulate insect host biology through a variety of means that result in increased production of infected females, enhancing its own transmission. A Wolbachia strain (wInn) naturally infecting Drosophila innubila induces male killing, while native strains of D. melanogaster and D.
View Article and Find Full Text PDFWolbachia-induced cytoplasmic incompatibility (CI) is expressed when infected males are crossed with either uninfected females or females infected with Wolbachia of different CI specificity. In diploid insects, CI results in embryonic mortality, apparently due to the the loss of the paternal set of chromosomes, usually during the first mitotic division. The molecular basis of CI has not been determined yet; however, several lines of evidence suggest that Wolbachia exhibits two distinct sex-dependent functions: in males, Wolbachia somehow "imprints" the paternal chromosomes during spermatogenesis (mod function), whereas in females, the presence of the same Wolbachia strain(s) is able to restore embryonic viability (resc function).
View Article and Find Full Text PDFBiological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R.
View Article and Find Full Text PDFIn this study, we report data about the presence of Wolbachia in Drosophila yakuba, D. teissieri, and D. santomea.
View Article and Find Full Text PDFWolbachia are a group of maternally transmitted obligatory intracellular alpha-proteobacteria that infect a wide range of arthropod and nematode species. Wolbachia infection in Drosophila in most cases is associated with the induction of cytoplasmic incompatibility (CI), manifested as embryonic lethality of offspring in a cross between infected males and uninfected females. While the molecular basis of CI is still unknown, it has been suggested that two bacterial functions are involved: mod (for modification) modifies the sperm during spermatogenesis and resc (for rescue) acts in the female germline and/or in early embryos, neutralizing the modification.
View Article and Find Full Text PDF