Publications by authors named "S Yu Kovalev"

In this paper, we demonstrate the successful implementation of reconfigurable field-programmable gate array technology into a pulse-resolved data acquisition system to achieve a femtosecond temporal resolution in ultrafast pump-probe experiments in real-time at large scale facilities. As proof of concept, electro-optic sampling of terahertz waveforms radiated by a superradiant emitter of a quasi-cw accelerator operating at a 50 kHz repetition rate and probed by an external laser system is performed. Options for up-scaling the developed technique to a MHz range of repetition rates are discussed.

View Article and Find Full Text PDF

In this Letter, we demonstrate terahertz (THz) magnetic field detection in fused silica with sensitivity that can be easily controlled by sample tilting (for both amplitude and polarization). The proposed technique remains in the linear regime at magnetic fields exceeding 0.3 T (0.

View Article and Find Full Text PDF

Understanding spin-lattice interactions in antiferromagnets is a critical element of the fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear phonon dynamics mediated by a magnon state were discovered in an antiferromagnet. Here, we suggest that a strongly coupled two-magnon-one phonon state in this prototypical system opens a novel pathway to coherently control magnon-phonon dynamics.

View Article and Find Full Text PDF

Tick-borne encephalitis virus Siberian subtype (TBEV-Sib) and Omsk hemorrhagic fever virus (OHFV) are causative agents of natural focal infections in Western Siberia, Russia. The distribution of TBEV phylogenetic lineages and OHFV in the Kemerovo Region of Western Siberia remains poorly investigated. The phylogenetic analyses of fragment genome sequences 26 flaviviruses identified in 2019 were performed, and the amino acid variation was determined to reveal to which clusteron they belong.

View Article and Find Full Text PDF

Ultrafast optical control of quantum systems is an emerging field of physics. In particular, the possibility of light-driven superconductivity has attracted much of attention. To identify nonequilibrium superconductivity, it is necessary to measure fingerprints of superconductivity on ultrafast timescales.

View Article and Find Full Text PDF