Publications by authors named "S Yu Gus'kov"

Shock-ignition effect in indirect-drive thermonuclear target is demonstrated on the base of numerical simulations. Thermonuclear gain (in relation to laser pulse energy) of a shock-ignited indirect-drive thermonuclear capsule is obtained, which is 22.5 times higher than that at a traditional spark ignition of the capsule with the same DT-fuel mass, wherein the shock-ignition laser pulse energy is 1.

View Article and Find Full Text PDF
Article Synopsis
  • - Direct laser acceleration (DLA) of electrons in near-critical density (NCD) plasmas is showing promise for high-energy laser applications, particularly in Inertial Confinement Fusion research.
  • - Experiments at the PHELIX sub-PW laser revealed efficient and highly directed betatron radiation from DLA electrons, producing around (3.4 ± 0.4)·10 photons per keV per sr at 10 keV photon energy.
  • - The results align well with particle-in-cell simulations, indicating that using low-density pre-ionized foams could lead to innovative advancements in high energy density research.
View Article and Find Full Text PDF

We present the results of experiments on the aneutronic fusion of proton-boron (pB) in a single miniature device with electrodynamic (oscillatory) plasma confinement. The device is based on a low energy (∼1-2 J) nanosecond vacuum discharge with a virtual cathode, the field of which accelerates protons and boron ions to the energies required for pB synthesis (∼100-300 keV) under oscillating ions' head-on collisions. The yields of α particles registered for different conditions of the experiment are presented and discussed in detail.

View Article and Find Full Text PDF

Optical generation of compact magnetized plasma structures is studied in the moderate intensity domain. A sub-ns laser beam irradiated snail-shaped targets with the intensity of about 10 W/cm. With a neat optical diagnostics, a sub-megagauss magnetized plasmoid is traced inside the target.

View Article and Find Full Text PDF

Shock ignition concept is a promising approach to inertial confinement fusion that may allow obtaining high fusion energy gains with the existing laser technology. However, the spike driving laser intensities in the range of 1-10 PW/cm2 produces the energetic electrons that may have a significant effect on the target performance. The hybrid numerical simulations including a radiation hydrodynamic code coupled to a rapid Fokker-Planck module are used to asses the role of hot electrons in the shock generation and the target preheat in the time scale of 100 ps and spatial scale of 100 μm.

View Article and Find Full Text PDF