Targeting the drug tolerant persister (DTP) state in cancer cells should prevent further development of resistance mechanisms. This study explored combination therapies to inhibit alectinib-induced DTP cell formation from anaplastic lymphoma kinase-positive non-small cell lung cancer (ALK + NSCLC) patient-derived cells. After drug-screening 3114 compounds, pan-HER inhibitors (ErbB pathway) and tankyrase1/2 inhibitors (Wnt/β-catenin signaling) emerged as top candidates to inhibit alectinib-induced DTP cells growth.
View Article and Find Full Text PDFCancers can develop resistance to treatment with ALK tyrosine kinase inhibitors (ALK-TKIs) via emergence of a subpopulation of drug-tolerant persister (DTP) cells that can survive initial drug treatment long enough to acquire genetic aberrations. DTP cells are thus a potential therapeutic target. We generated alectinib-induced DTP cells from a patient-derived ALK non-small-cell lung cancer (NSCLC) cell line and screened 3114 agents in the anticancer compounds library (TargetMol).
View Article and Find Full Text PDFCancer cell resistance arises when tyrosine kinase inhibitor (TKI)-targeted therapies induce a drug-tolerant persister (DTP) state with growth via genetic aberrations, making DTP cells potential therapeutic targets. We screened an anti-cancer compound library and identified fibroblast growth factor receptor 1 (FGFR1) promoting alectinib-induced anaplastic lymphoma kinase (ALK) fusion-positive DTP cell's survival. FGFR1 signaling promoted DTP cell survival generated from basal FGFR1- and fibroblast growth factor 2 (FGF2)-high protein expressing cells, following alectinib treatment, which is blocked by FGFR inhibition.
View Article and Find Full Text PDF