Publications by authors named "S Y Agustsson"

Angle-resolved photoemission spectroscopy (ARPES) is a technique used to map the occupied electronic structure of solids. Recent progress in x-ray focusing optics has led to the development of ARPES into a microscopic tool, permitting the electronic structure to be spatially mapped across the surface of a sample. This comes at the expense of a time-consuming scanning process to cover not only a three-dimensional energy-momentum (E, kx, ky) space but also the two-dimensional surface area.

View Article and Find Full Text PDF

Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh.

View Article and Find Full Text PDF

The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e-e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons.

View Article and Find Full Text PDF

The heavy-fermion behavior in intermetallic compounds manifests itself in a quenching of local magnetic moments by developing Kondo spin-singlet many-body states combined with a drastic increase of the effective mass of conduction electrons, which occurs below the lattice Kondo temperature. This behavior is caused by interactions between the strongly localized 4electrons and itinerant electrons. A controversially discussed question in this context is how the localized electronic states contribute to the Fermi surface upon changing the temperature.

View Article and Find Full Text PDF