Publications by authors named "S Wymann"

CSL040 is a soluble, recombinant fragment of the complement receptor 1 (CR1) extracellular domain that acts as an inhibitor of all three pathways of the complement system. Systemic toxicity, toxicokinetics (TK), and pharmacodynamics (PD) of CSL040 were assessed in two-week intravenous (IV) bolus studies in Han Wistar rats and cynomolgus monkeys. Recovery from any effects was evaluated during a four-week recovery period.

View Article and Find Full Text PDF

Complement receptor 1 (CR1) is a membrane glycoprotein with a highly duplicated domain structure able to bind multiple ligands such as C3b and C4b, the activated fragments of complement components C3 and C4, respectively. We have previously used our knowledge of this domain structure to identify CSL040, a soluble extracellular fragment of CR1 containing the long homologous repeat (LHR) domains A, B, and C. CSL040 retains the ability to bind both C3b and C4b but is also a more potent complement inhibitor than other recombinant CR1-based therapeutics.

View Article and Find Full Text PDF

Secondary brain injury (SBI) occurs with a lag of several days post-bleeding in patients with aneurysmal subarachnoid hemorrhage (aSAH) and is a strong contributor to mortality and long-term morbidity. aSAH-SBI coincides with cell-free hemoglobin (Hb) release into the cerebrospinal fluid. This temporal association and convincing pathophysiological concepts suggest that CSF-Hb could be a targetable trigger of SBI.

View Article and Find Full Text PDF

Human complement receptor 1 (CR1) is a membrane-bound regulator of complement that has been the subject of recent attempts to generate soluble therapeutic compounds comprising different fragments of its extracellular domain. This review will focus on the extracellular domain of CR1 and detail how its highly duplicated domains work both separately and together to mediate binding to its main ligands C3b and C4b, and to inhibit the classical, lectin, and alternative pathways of the complement cascade via the mechanisms of decay acceleration activity (DAA) and co-factor activity (CFA). Understanding the molecular basis of CR1 activity is made more complicated by the presence not only of multiple ligand binding domains within CR1 but also the fact that C3b and C4b can interact with CR1 as both monomers, dimers, and heterodimers.

View Article and Find Full Text PDF

Human Complement Receptor 1 (HuCR1) is a potent membrane-bound regulator of complement both in vitro and in vivo, acting via interaction with its ligands C3b and C4b. Soluble versions of HuCR1 have been described such as TP10, the recombinant full-length extracellular domain, and more recently CSL040, a truncated version lacking the C-terminal long homologous repeat domain D (LHR-D). However, the role of N-linked glycosylation in determining its pharmacokinetic (PK) and pharmacodynamic (PD) properties is only partly understood.

View Article and Find Full Text PDF