Publications by authors named "S Willuweit"

The ReAct (Recovery, Activity) project is an ENFSI (European Network of Forensic Science Institutes) supported initiative comprising a large consortium of laboratories. Here, the results from more than 23 laboratories are presented. The primary purpose was to design experiments simulating typical casework circumstances; collect data and to implement Bayesian networks to assess the value (i.

View Article and Find Full Text PDF

A deeper understanding of the mechanical characteristics of adipose tissue under large deformation is important for the analysis of blunt force trauma, as adipose tissue alters the stresses and strains that are transferred to subjacent tissues. Hence, results from drop tower tests of subcutaneous adipose tissue are presented (i) to characterise adipose tissue behaviour up to irreversible deformation, (ii) to relate this to the microstructural configuration, (iii) to quantify this deformation and (iv) to provide an analytical basis for computational modelling of adipose tissue under blunt impact. The drop tower experiments are performed exemplarily on porcine subcutaneous adipose tissue specimens for three different impact velocities and two impactor geometries.

View Article and Find Full Text PDF

To evaluate the promising advantages of massively parallel sequencing (MPS) in our casework, we analysed a total of 33 Y-chromosomal short tandem repeats (Y-STRs) with traditional capillary electrophoresis (CE) and 25 Y-STRs using the newer MPS technology. We studied the outcome of both technologies in 64 father-son pairs using stock and custom-designed kits. Current MPS technology confirmed the 13 mutational events observed with CE and improved our understanding of the complex nature of STR mutations.

View Article and Find Full Text PDF

Forensic genetic laboratories perform a large amount of STR analyses of the Y chromosome, in particular to analyze the male part of complex DNA mixtures. However, the statistical interpretation of evidence retrieved from Y-STR haplotypes is challenging. Due to the uni-parental inheritance mode, Y-STR loci are connected to each other and thus haplotypes show patterns of relationship on the familial and population level.

View Article and Find Full Text PDF