Publications by authors named "S Wiessner"

Stretchable, flexible sensors are one of the most critical components of smart wearable electronics and Internet of Things (IoT), thereby attracting multipronged research interest in the last decades. Following miniaturization and multicomponent development of several sensors in one could further propel the demand for wireless, multimodal platforms. Greener substitutes to conventional sensors that can operate in a self-powered configuration are highly desirable in terms of all-in-one sensor utilities.

View Article and Find Full Text PDF

Due to some useful mechanical, dynamic, and dielectric properties along with the ease of processing and forming, liquid rubbers are ideal materials for fabricating dielectric elastomer actuators in various configurations and for many potential applications ranging from automation to automobile and medical industry. In this study, we present a cross-linkable liquid rubber composition where amine-catalyzed esterification reactions lead to the formation of a network structure based on anhydride functional isoprene rubber, carboxyl-terminated nitrile-butadiene rubber, and epoxy end-capped prepolymers. The success of this intricate network formation procedure was verified by HR-MAS NMR spectroscopy.

View Article and Find Full Text PDF

The complex multiphase morphology of thermoplastic elastomers based on styrene-block copolymers (TPSs) affects their flow behavior significantly and in a way which may not be considered by commonly used characterization and evaluation procedures. To evaluate the relevance of non-Newtonian flow phenomena for the validity of rheometric data in processing, three commercially available TPSs with comparable hardness of about 60 Shore A but with different application fields were selected and characterized using parallel plate and high-pressure capillary rheometry. The validity of the rheometric data is assessed by modeling the flow in a high-pressure capillary rheometer by a computational fluid dynamics (CFD) simulation.

View Article and Find Full Text PDF

Self-powered tactile module-based electronic skins incorporating triboelectric nanogenerator (TENG) appears to be a worthwhile alternative for smart monitoring devices in terms of sustainable energy harvesting. On top of it, ultra-stretchability and detection sensitivity are imperative to mimic human skin. We report, for the first time, a metal-free single electrode TENG-based self-powered tactile module comprising of microwells (diameters 2 μm and 200 nm, respectively) on fluoroelastomer (FKM) and laser induced graphene (LIG) electrodes by in situ simultaneous transfer printing method.

View Article and Find Full Text PDF

The preparation of intelligent structures for multiple smart applications such as soft-robotics, artificial limbs, etc., is a rapidly evolving research topic. In the present work, the preparation of a functional fabric, and its integration into a soft elastomeric matrix to develop an adaptive fiber-elastomer composite structure, is presented.

View Article and Find Full Text PDF