Excipients, considered "inactive ingredients," are a major component of formulated drugs and play key roles in their pharmacokinetics. Despite their pervasiveness, whether they are active on any targets has not been systematically explored. We computed the likelihood that approved excipients would bind to molecular targets.
View Article and Find Full Text PDFMetallo-β-lactamases (MBLs), such as New Delhi metallo-β-lactamase (NDM-1) have spread world-wide and present a serious threat. Expression of MBLs confers resistance in Gram-negative bacteria to all classes of β-lactam antibiotics, with the exception of monobactams, which are intrinsically stable to MBLs. However, existing first generation monobactam drugs like aztreonam have limited clinical utility against MBL-expressing strains because they are impacted by serine β-lactamases (SBLs), which are often co-expressed in clinical isolates.
View Article and Find Full Text PDFThe Food and Drug Administration Adverse Event Reporting System (FAERS) remains the primary source for post-marketing pharmacovigilance. The system is largely un-curated, unstandardized, and lacks a method for linking drugs to the chemical structures of their active ingredients, increasing noise and artefactual trends. To address these problems, we mapped drugs to their ingredients and used natural language processing to classify and correlate drug events.
View Article and Find Full Text PDFSecondary pharmacology is an essential component of drug discovery and is used extensively in the pharmaceutical industry for achieving optimal specificity of new drugs via early hazard identification and off-target mitigation. The importance of this discipline has been achieved by increasing its translational value, based on the recognition of biological target-drug molecule-adverse drug reaction (ADR) associations and integration of secondary pharmacology data with pharmacokinetic parameters. Information obtained from clinical ADRs, from recognition of specific phenotypes of animal models and from hereditary diseases provides increasing regulatory confidence in the target-based approach to ADR prediction and mitigation.
View Article and Find Full Text PDFBlockade of the hERG potassium channel prolongs the ventricular action potential (AP) and QT interval, and triggers early after depolarizations (EADs) and torsade de pointes (TdP) arrhythmia. Opinions differ as to the causal relationship between hERG blockade and TdP, the relative weighting of other contributing factors, definitive metrics of preclinical proarrhythmicity, and the true safety margin in humans. Here, we have used in silico techniques to characterize the effects of channel gating and binding kinetics on hERG occupancy, and of blockade on the human ventricular AP.
View Article and Find Full Text PDF