Publications by authors named "S Wamberg"

Dietary benzoic acid (BA) supplementation causes a pronounced reduction in urinary pH but only small changes in blood pH. The present study aimed to investigate the portal absorption profile, hepatic metabolism of BA, and renal excretion of hippuric acid (HA) underlying the relatively small impact of BA on systemic acid-base status. Eight growing pigs (BW = 63 +/- 1 kg at sampling) fitted with permanent indwelling catheters in the abdominal aorta, hepatic portal vein, hepatic vein, and mesenteric vein were allocated to 4 sampling blocks and randomly assigned to control (CON; nonsupplemented diet) or BA supplementation (B; control diet + 1% BA top-dressed).

View Article and Find Full Text PDF

Renin secretion is regulated in part by renal nerves operating through beta1-receptors of the renal juxtaglomerular cells. Slow sodium loading may decrease plasma renin concentration (PRC) and cause natriuresis at constant mean arterial blood pressure (MAP) and glomerular filtration rate (GFR). We hypothesized that in this setting, renin secretion and renin-dependent sodium excretion are controlled by via the renal nerves and therefore are eliminated or reduced by blocking the action of norepinephrine on the juxtaglomerular cells with the beta1-receptor antagonist metoprolol.

View Article and Find Full Text PDF

Aims: The study was designed to determine (i) whether the effects of angiotensin III (AngIII) are similar to those of angiotensin II (AngII) at identical plasma concentrations and (ii) whether AngIII operates solely through AT1- receptors.

Methods: Angiotensin II (3 pmol kg(-1) min(-1)-3.1 ng kg(-1) min(-1)) or AngIII (15 pmol kg(-1) min(-1)-14 ng kg(-1) min(-1)) was infused i.

View Article and Find Full Text PDF

Aims: The operating range of the renin-angiotensin-aldosterone system is ill-defined. This study quantifies renin-angiotensin-aldosterone system activity as a function of sodium intake.

Methods: Renin-angiotensin-aldosterone system variables were measured daily after a sudden reduction in sodium intake (3.

View Article and Find Full Text PDF

Body fluid regulation depends on regulation of renal excretion. This includes a fast vasopressin-mediated water-retaining mechanism, and slower, complex sodium-retaining systems dominated by the renin-angiotensin aldosterone cascade. The sensory mechanisms of sodium control are not identified; effectors may include renal arterial pressure, renal reflexes, extrarenal hormones and other regulatory factors.

View Article and Find Full Text PDF