Purpose: To evaluate the correlation between the extent of cerebral white matter lesions (WMLs) and the integrity of the visual pathway represented by fractional anisotropy (FA) in patients with primary open-angle glaucoma (POAG).
Methods: This case-control study included a total of 61 German patients (39 POAG patients, 22 controls) matched for age and sex. Fractional anisotropy of the optic radiation was determined by 3-Tesla diffusion tensor imaging.
Purpose of this study was to evaluate with diffusion-tensor imaging (DTI) changes of radial diffusivity (RD) and fractional anisotropy (FA) in the optic nerve (ON) and optic radiation (OR) in glaucoma and to determine whether changes in RD and FA correlate with disease severity. Therefore, glaucoma patients and controls were examined using 3T. Regions of interest were positioned on RD and FA maps, and mean values were calculated for ON and OR and correlated with optic nerve atrophy and reduced spatial-temporal contrast sensitivity (STCS) of the retina.
View Article and Find Full Text PDFRationale And Objectives: The aims of this study was to evaluate, using 3-T diffusion tensor imaging, changes of fractional anisotropy (FA) in the orbital and intracranial part of the optic nerve (ON), the optic chiasm, the lateral geniculate nucleus, and different parts of the optic radiation (OR) in patients with glaucoma compared to controls and to determine whether FA correlates with disease severity.
Materials And Methods: Twenty patients with glaucoma and 22 age-matched controls were examined using 3-T diffusion tensor imaging. Regions of interest were positioned on the FA maps, and mean values were calculated for each ON, optic chiasm, lateral geniculate nucleus, and OR.
Rationale And Objectives: Diffusion tensor imaging (DTI) can depict rarefaction of the optical fibres. Hence, we applied DTI to assess pathological changes of the optic radiation in glaucoma patients.
Materials And Methods: Fifty glaucoma patients and 50 healthy age-matched controls were examined by a 3T high-field magnetic resonance scanner.
Glaucomatous optic nerve atrophy may continue to the linked optic radiation by transneuronal degeneration, as described in animal models of glaucoma. In vivo visualization of the visual pathway represents a new challenge in the field of ophthalmology. We present a new approach for illustration of the optic radiation by diffusion tensor imaging (DTI) based on magnetic resonance imaging (MRI).
View Article and Find Full Text PDF