Publications by authors named "S Wabnitz"

We experimentally study the spatial beam profile and the spectral broadening at the output of a multimode air-silica microstructure fiber taper, used along the direction of an increasing fiber diameter. By using a laser pump at 1064 nm emitting 60 ps Gaussian beam pulses, we observed a competition between Raman beam cleanup and Kerr beam self-cleaning: the multimode frequency conversion process permits to generate spectral sidebands with frequency detuning from the pump that are difficult to obtain in standard graded-index multimode fibers. The generated supercontinuum spans from 500 nm up to 2.

View Article and Find Full Text PDF

We present a direct experimental confirmation of the maximization of entropy which accompanies the thermalization of a highly multimode light beam, upon its nonlinear propagation in standard graded-index (GRIN) optical fibers.

View Article and Find Full Text PDF

From AD 567-568, at the onset of the Avar period, populations from the Eurasian Steppe settled in the Carpathian Basin for approximately 250 years. Extensive sampling for archaeogenomics (424 individuals) and isotopes, combined with archaeological, anthropological and historical contextualization of four Avar-period cemeteries, allowed for a detailed description of the genomic structure of these communities and their kinship and social practices. We present a set of large pedigrees, reconstructed using ancient DNA, spanning nine generations and comprising around 300 individuals.

View Article and Find Full Text PDF

We report on the generation of twin beams through a cascaded process of optical parametric oscillation in a doubly resonant second-harmonic generation system. These bright beams exhibit strong quantum correlations, enabling the observation of up to 5 dB of noise reduction in their intensity difference below the standard quantum limit.

View Article and Find Full Text PDF

Optical pulses traveling through multimode optical fibers encounter the influence of both linear disturbances and nonlinearity, resulting in a complex and chaotic redistribution of power among different modes. In our research, we explore the phenomenon where multimode fibers reach stable states marked by the concentration of energy into both single and multiple sub-systems. We introduce a weighted Bose-Einstein law, demonstrating its suitability in describing thermalized modal power distributions in the nonlinear regime, as well as steady-state distributions in the linear regime.

View Article and Find Full Text PDF