Pheochromocytomas (PCCs) are tumors arising from chromaffin cells in the adrenal medulla, and paragangliomas (PGLs) are tumors derived from extra-adrenal sympathetic or parasympathetic paraganglia; these tumors are collectively referred to as PPGL cancer. Treatment for PPGL primarily involves surgical removal of the tumor, and only limited options are available for treatment of the disease once it becomes metastatic. Human carriers of the heterozygous mutations in the succinate dehydrogenase subunit B () gene are susceptible to the development of PPGL.
View Article and Find Full Text PDFThe temperature dependence of the vibrational sum-frequency generation (vSFG) spectra of the air/water interface is investigated using many-body molecular dynamics (MB-MD) simulations performed with the MB-pol potential energy function. The vSFG spectra calculated for different polarization combinations are then analyzed in terms of molecular autocorrelation and cross-correlation contributions. To provide molecular-level insights into interfacial hydrogen-bonding topologies, which give rise to specific spectroscopic features, the vSFG spectra are further investigated by separating contributions associated with water molecules donating zero, one, or two hydrogen bonds to neighboring water molecules.
View Article and Find Full Text PDFThe structure of liquid water as a function of temperature is investigated through the modeling of infrared and Raman spectra along with structural order parameters calculated from classical and quantum molecular dynamics simulations with the MB-pol many-body potential energy function. The magnitude of nuclear quantum effects is also monitored by comparing the vibrational spectra obtained from classical and centroid molecular dynamics, both in intensities and peak positions. The observed changes in spectral activities are shown to reflect changes in the underlying structure of the hydrogen-bond network and are found to be particularly sensitive to many-body effects in the representation of the electrostatic interactions.
View Article and Find Full Text PDFAn unambiguous assignment of the vibrational spectra of ice I remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the lattice vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal.
View Article and Find Full Text PDFThe MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level.
View Article and Find Full Text PDF