Publications by authors named "S W Seager"

We report on the proof-of-concept of a low-mass, low-power method for collecting micron-sized sulfuric acid aerosols in bulk from the atmosphere of Venus. The collection method uses four wired meshes in a sandwich structure with a deposition area of 225 cm. It operates in two modes: passive and electrostatic.

View Article and Find Full Text PDF

Life is a complex, dynamic chemical system that requires a dense fluid solvent in which to take place. A common assumption is that the most likely solvent for life is liquid water, and some researchers argue that water is the only plausible solvent. However, a persistent theme in astrobiological research postulates that other liquids might be cosmically common and could be solvents for the chemistry of life.

View Article and Find Full Text PDF

Astronomers have found more than a dozen planets transiting stars that are 10-40 million years old, but younger transiting planets have remained elusive. The lack of such discoveries may be because planets have not fully formed at this age or because our view is blocked by the protoplanetary disk. However, we now know that many outer disks are warped or broken; provided the inner disk is depleted, transiting planets may thus be visible.

View Article and Find Full Text PDF

Purpose: The generation of representative disease phenotypes is important for ensuring the reliability of the findings of observational studies. The aim of this manuscript is to outline a reproducible framework for reliable and traceable phenotype generation based on real world data for use in the Data Analysis and Real-World Interrogation Network (DARWIN EU). We illustrate the use of this framework by generating phenotypes for two diseases: pancreatic cancer and systemic lupus erythematosus (SLE).

View Article and Find Full Text PDF

Cryo-EM particle identification from micrographs ("picking") is challenging due to the low signal-to-noise ratio and lack of ground truth for particle locations. State-of-the-art computational algorithms ("pickers") identify different particle sets, complicating the selection of the best-suited picker for a protein of interest. Here, we present REliable PIcking by Consensus (REPIC), a computational approach to identifying particles common to the output of multiple pickers.

View Article and Find Full Text PDF