Publications by authors named "S W Schwarzacher"

The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage. The latter involves global alterations, making understanding plastic responses triggered by local damage difficult. One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche, the subgranular zone, and beyond neurogenesis, newly born granule cells may maintain a "young" phenotype throughout life, adding to the plastic nature of the structure.

View Article and Find Full Text PDF

Background: Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother.

View Article and Find Full Text PDF

Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine head correlates with the strength of its synapse. The distribution of spine head sizes follows a lognormal-like distribution with more small spines than large ones. We analysed the impact of synaptic activity and plasticity on the spine size distribution in adult-born hippocampal granule cells from rats with induced homo- and heterosynaptic long-term plasticity and CA1 pyramidal cells from Munc13-1/Munc13-2 knockout mice with completely blocked synaptic transmission.

View Article and Find Full Text PDF

The axon initial segment (AIS) is the site of action potential initiation and important for the integration of synaptic input. Length and localization of the AIS are dynamic, modulated by afferent activity and contribute to the homeostatic control of neuronal excitability. Synaptopodin is a plasticity-related protein expressed by the majority of telencephalic neurons.

View Article and Find Full Text PDF

Loss-of-function mutations in neuroligin-4 (Nlgn4), a member of the neuroligin family of postsynaptic adhesion proteins, cause autism spectrum disorder in humans. Nlgn4 knockout (KO) in mice leads to social behavior deficits and complex alterations of synaptic inhibition or excitation, depending on the brain region. In the present work, we comprehensively analyzed synaptic function and plasticity at the cellular and network levels in hippocampal dentate gyrus of Nlgn4 KO mice.

View Article and Find Full Text PDF