Background And Objectives: The use of rapid response EEG (rr-EEG) has recently expanded in limited-resource settings and as a supplement to conventional EEG to rapidly detect and treat nonconvulsive status epilepticus. The study objective was to test the accuracy of an rr-EEG's automated seizure burden estimator (ASBE).
Methods: This is a retrospective observational study using multiple blinded reviewers.
Background: Finding appropriate model parameters for multi-compartmental neuron models can be challenging. Parameters such as the leak and axial conductance are not always directly derivable from neuron observations but are crucial for replicating desired observations. The objective of this study is to replicate the attenuation behavior of an excitatory postsynaptic potential (EPSP) traveling along a linear chain of compartments on the analog BrainScaleS-2 neuromorphic hardware platform.
View Article and Find Full Text PDFCationic, core-crosslinked nanogel particles are prepared from synthetic biodegradable materials. These fully hydrophilic nanogels offer superior customizability compared to common lipid nanoparticles, thereby circumventing intrinsic immune stimulatory properties. Electrostatic loading allows for complexation of nucleic acids including the immune stimulatory Toll-like receptor 9 (TLR9) agonistCpG-ODN (cytidine-phosphate-guanosine oligodeoxynucleotide).
View Article and Find Full Text PDFLow-intensity transcranial focused ultrasound (tFUS) has emerged as a powerful neuromodulation tool characterized by its deep penetration and precise spatial targeting to influence neural activity. Our study directed low-intensity tFUS stimulation onto a region of prefrontal cortex (the frontal eye field, or FEF) of a rhesus macaque to examine its impact on a remote site, the extrastriate visual cortex (area V4) through this top-down modulatory circuit that has been studied extensively with electrical microstimulation.To measure the impact of tFUS stimulation, we recorded local field potentials and multi-unit spiking activities from a multi-electrode array implanted in the visual cortex.
View Article and Find Full Text PDF