Publications by authors named "S W Pacala"

Tree successional diversity is evident even to casual observers and has a well-understood physiological basis. Various life history trade-offs, driven by interspecific variation in a single trait, help maintain this diversity. Conspecific negative density dependence (CNDD) is also well-documented and reduces tree vital rates independently of succession strategies.

View Article and Find Full Text PDF

The rationale behind trait-based ecology is that shifting focus from species' taxonomic names to their measurable characteristics ('functional traits') leads to greater generality and predictive power. This idea has been applied to one of ecology's most intractable problems: the coexistence of competing species. But after 20 years, we lack clear evidence that functional traits effectively predict coexistence.

View Article and Find Full Text PDF

Extending and safeguarding tropical forest ecosystems is critical for combating climate change and biodiversity loss. One of its constituents, lianas, is spreading and increasing in abundance on a global scale. This is particularly concerning as lianas negatively impact forests' carbon fluxes, dynamics, and overall resilience, potentially exacerbating both crises.

View Article and Find Full Text PDF

Understanding how diversity is maintained in plant communities requires that we first understand the mechanisms of competition for limiting resources. In ecology, there is an underappreciated but fundamental distinction between systems in which the depletion of limiting resources reduces the growth rates of competitors and systems in which resource depletion reduces the time available for competitors to grow, a mechanism we call 'competition for time'. Importantly, modern community ecology and our framing of the coexistence problem are built on the implicit assumption that competition reduces the growth rate.

View Article and Find Full Text PDF

Tropical forests contribute a major sink for anthropogenic carbon emissions essential to slowing down the buildup of atmospheric CO and buffering climate change impacts. However, the response of tropical forests to more frequent weather extremes and long-recovery disturbances like fires remains uncertain. Analyses of field data and ecological theory raise concerns about the possibility of the Amazon crossing a tipping point leading to catastrophic tropical forest loss.

View Article and Find Full Text PDF