Publications by authors named "S W Newsom"

Objective: Circulating lipids are linked with insulin resistance and increased cardiovascular disease risk. We previously reported that dihydroceramides, a specific type of sphingolipid, are elevated in insulin-resistant individuals; however, little is known regarding whether insulin-sensitizing lifestyle interventions can improve profiles of sphingolipids and other lipid species.

Methods: A total of 21 individuals with obesity participated in a 3-month lifestyle intervention of combined weight loss and exercise training.

View Article and Find Full Text PDF

Elevated skeletal muscle diacylglycerols (DAGs) and ceramides can impair insulin signaling, and acylcarnitines (acylCNs) reflect impaired mitochondrial fatty acid oxidation, thus, the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e.

View Article and Find Full Text PDF

Regular exercise and antihyperglycemic drugs are front-line treatments for type-2 diabetes and related metabolic disorders. Leading drugs are metformin, sodium-glucose cotransporter-2 inhibitors, and glucagon-like peptide 1 receptor agonists. Each class has strong individual efficacy to treat hyperglycemia, yet the combination with exercise can yield varied results, some of which include blunting of expected metabolic benefits.

View Article and Find Full Text PDF

This article presents a visual analytics framework, idMotif, to support domain experts in identifying motifs in protein sequences. A motif is a short sequence of amino acids usually associated with distinct functions of a protein, and identifying similar motifs in protein sequences helps us to predict certain types of disease or infection. idMotif can be used to explore, analyze, and visualize such motifs in protein sequences.

View Article and Find Full Text PDF

To protect against mobile genetic elements (MGEs), some bacteria and archaea have clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) adaptive immune systems. CRISPR RNAs (crRNAs) bound to Cas nucleases hybridize to MGEs based on sequence complementarity to guide the nucleases to cleave the MGEs. This programmable DNA cleavage has been harnessed for gene editing.

View Article and Find Full Text PDF