Publications by authors named "S W Golf"

Astrocytes play a crucial role in maintaining brain homeostasis through functional gap junctions (GJs) primarily formed by connexin43 (Cx43). These GJs facilitate electrical and metabolic coupling between astrocytes, allowing the passage of ions, glucose, and metabolites. Dysregulation of Cx43 has been implicated in various pathologies, including traumatic brain injury (TBI) and acquired epilepsy.

View Article and Find Full Text PDF

Astrocytes perform multifarious roles in the formation, regulation, and function of synapses in the brain, but the mechanisms involved are incompletely understood. Interestingly, astrocytes abundantly express neuroligins, postsynaptic adhesion molecules that function as synaptic organizers by binding to presynaptic neurexins. Here we examined the function of neuroligins in astrocytes with a rigorous genetic approach that uses the conditional deletion of all major neuroligins () in astrocytes and complemented this approach by a genetic deletion of neuroligins in glia cells that are co-cultured with human neurons.

View Article and Find Full Text PDF

At CA1→subiculum synapses, alternatively spliced neurexin-1 (Nrxn1) and neurexin-3 (Nrxn3) enhance NMDA-receptors and suppress AMPA-receptors, respectively, without affecting synapse formation. Nrxn1 and Nrxn3 act by binding to secreted cerebellin-2 (Cbln2) that in turn activates postsynaptic GluD1 receptors. Whether neurexin-Cbln2-GluD1 signaling has additional functions besides regulating NMDA- and AMPA-receptors, and whether such signaling performs similar roles at other synapses, however, remains unknown.

View Article and Find Full Text PDF