In order to further evaluate the behavior of ionospheric variations at Mars, we investigate the Martian ionosphere-thermosphere (IT) perturbations associated with non-migrating thermal tides using over four years of Mars Atmosphere and Volatile Evolution (MAVEN) in situ measurements of the IT electron and neutral densities. The results are consistent with those of previous studies, namely strong correlation between the tidal perturbations in electron and neutral densities on the dayside at altitudes ~150-185 km, as expected from photochemical theory. In addition, there are intervals during which this correlation extends to higher altitudes, up to ~270 km, where diffusive transport of plasma plays a dominant role over photochemical processes.
View Article and Find Full Text PDFLongitudinal structures in the Martian thermosphere and topside ionosphere between 150 and 200 km altitudes are studied using in situ electron and neutral measurements from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Four time intervals are selected for comparison, during which MAVEN sampled similar local time (9.3-10.
View Article and Find Full Text PDFThe thermosphere of Mars is the interface through which the planet is continuously losing its reservoir of atmospheric volatiles to space. The structure and dynamics of the thermosphere is driven by a global circulation that redistributes the incident energy from the Sun. We report mapping of the global circulation in the thermosphere of Mars with the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft.
View Article and Find Full Text PDFWe report the first global, time-dependent simulation of the Mars upper atmospheric responses to a realistic solar flare event, an X8.2 eruption on 10 September 2017. The Mars Global Ionosphere-Thermosphere Model runs with realistically specified flare irradiance, giving results in reasonably good agreement with the Mars Atmosphere and Volatile EvolutioN spacecraft measurements.
View Article and Find Full Text PDFThe Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS) provides sensitive detections of neutral gas and ambient ion composition. NGIMS measurements of nine atomic and molecular neutral species, and their variation with altitude, latitude, and solar zenith angle are reported over several months of operation of the MAVEN mission. Sampling NGIMS signals from multiple neutral species every several seconds reveals persistent and unexpectedly large amplitude density structures.
View Article and Find Full Text PDF