Air pollution is an important issue, especially in megacities across the world. There are emission sources within and also in the regions around these cities, which cause fluctuations in air quality based on prevailing meteorological conditions. Short term air quality forecasting is used not to just possibly mitigate forthcoming high air pollution episodes, but also to plan for reduced exposures of residents.
View Article and Find Full Text PDFBackground: The Antwerp ring road has a traffic density of 300,000 vehicles per day and borders the city center. The 'Ringland project' aims to change the current 'open air ring road' into a 'filtered tunneled ring road', putting the entire urban ring road into a tunnel and thus filtering air pollution. We conducted a health impact assessment (HIA) to quantify the possible benefit of a 'filtered tunneled ring road', as compared to the 'open air ring road' scenario, on air quality and its long-term health effects.
View Article and Find Full Text PDFThe photodissociation and laser assisted dissociation of the carbon monoxide dication X(3)Π CO(2+) into the (3)Σ(-) states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X (3)Π state are performed for 13 excited (3)Σ(-) states of CO(2+). The photodissociation cross section, calculated by time-dependent methods, shows that the C(+) + O(+) channels dominate the process in the studied energy range.
View Article and Find Full Text PDFEffects of vegetation on pollutant dispersion receive increased attention in attempts to reduce air pollutant concentration levels in the urban environment. In this study, we examine the influence of vegetation on the concentrations of traffic pollutants in urban street canyons using numerical simulations with the CFD code OpenFOAM. This CFD approach is validated against literature wind tunnel data of traffic pollutant dispersion in street canyons.
View Article and Find Full Text PDFWe investigate the photodissociation of HeH(+) in the metastable triplet state as well as its formation through the inverse process, radiative association. In models of astrophysical plasmas, HeH(+) is assumed to be present only in the ground state, and the influence of the triplet state has not been explored. It may be formed by radiative association during collisions between a proton and metastable helium, which are present in significant concentrations in nebulae.
View Article and Find Full Text PDF