Publications by authors named "S Vonhof"

Article Synopsis
  • * Extended X-ray Absorption Fine Structure (EXAFS) is an effective technique for assessing material temperature and density for certain elements under dynamic compression.
  • * The National Ignition Facility has created different configurations for EXAFS measurements using advanced x-ray sources and curved-crystal spectrometers to improve material analysis in both standard and extreme conditions.
View Article and Find Full Text PDF

To benchmark the accuracy of the models and improve the predictive capability of future experiments, the National Ignition Facility requires measurements of the physical conditions inside inertial confinement fusion hohlraums. The ion temperature and bulk motion velocity of the gas-filled regions of the hohlraum can be obtained by replacing the helium tamping gas in the hohlraum with deuterium-tritium (DT) gas and measuring the Doppler broadening and Doppler shift of the neutron spectrum produced by nuclear reactions in the hohlraum. To understand the spatial distribution of the neutron production inside the hohlraum, we have developed a new penumbral neutron imager with a 12 mm diameter field of view using a simple tungsten alloy spindle.

View Article and Find Full Text PDF

The predicted implosion performance of deuterium-tritium fuel capsules in indirect-drive inertial confinement fusion experiments relies on precise calculations of the x-ray drive in laser-heated cavities (hohlraums). This requires accurate, spectrally dependent simulations of laser to x-ray conversion efficiencies and x-ray absorption losses to the hohlraum wall. A set of National Ignition Facility experiments have identified a cause for the long-standing hohlraum "drive deficit" as the overprediction of gold emission at ∼2.

View Article and Find Full Text PDF
Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

Large laser facilities have recently enabled material characterization at the pressures of Earth and Super-Earth cores. However, the temperature of the compressed materials has been largely unknown, or solely relied on models and simulations, due to lack of diagnostics under these challenging conditions. Here, we report on temperature, density, pressure, and local structure of copper determined from extended x-ray absorption fine structure and velocimetry up to 1 Terapascal.

View Article and Find Full Text PDF