Publications by authors named "S Vitusevich"

We demonstrate a hybrid nanocomposite combining mesoporous silica, p , as a host medium and guest lithium niobate nanocrystals embedded into tubular silica nanochannels by calcination of the precursor mixed solution of lithium and niobium salts. High-resolution transmission electron microscopy, X-ray diffraction and Raman scattering techniques reveal trigonal nanocrystals within the p nanochannels, indicating their random texture morphology. Annealing at high temperatures ( 950 C) during calcination also leads to partial crystallization of the p matrix with the formation of trigonal - nanocrystals.

View Article and Find Full Text PDF

The synthesis of nanosized organic benzil (C6H5CO)2 crystals within the mesoporous SiO2 host matrix was investigated via X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and lattice dynamics analysis. Combining these methods, we have proved that the main structural properties of benzil nanocrystals embedded into SiO2 host membranes with pore diameters of 6.0, 7.

View Article and Find Full Text PDF

High-quality CsCuX and CsCuX (X = Cl, Br, I) nanocrystals (NCs) exhibit excellent optoelectronic, physical, and chemical properties for detection of UV radiation due to large carrier mobility and lifetime, and heavy atoms. The nanocrystal materials can be prepared a low-cost and simple solid-state synthesis. However, poor reproducibility and complex synthesis methods of obtaining perovskite NC thin films represent a drawback for the fabrication of the commercial photoelectric device.

View Article and Find Full Text PDF

Amino acids play essential role for humans. We studied the dielectric properties of the basic aliphatic amino acids and polar positive amino acids in solutions of different concentrations. The high-Q single microwave whispering gallery-mode (WGM) quartz dielectric resonator based technique, enhanced to a number of measurement frequencies, was applied.

View Article and Find Full Text PDF

The lattice dynamics of preferentially aligned nanocrystals formed upon drying of aqueous Ba(NO) solutions in a mesoporous silica glass traversed by tubular pores of approximately 12 nm are explored by Raman scattering. To interpret the experiments on the confined nanocrystals polarized Raman spectra of bulk single crystals and X-ray diffraction experiments are also performed. Since a cubic symmetry is inherent to Ba(NO), a special Raman scattering geometry was utilized to separate the phonon modes of A and E species.

View Article and Find Full Text PDF