Background And Purpose: Although research with functional MR imaging of the brain has proliferated over the past 5 years, technical limitations, such as motion, chemical shift, and susceptibility artifacts, have impeded such research in the human spinal cord. The purpose of this investigation was to determine whether a reliable functional MR imaging signal can be elicited from the cervical spinal cord during simple motor activity.
Methods: Subjects performed three different motor tasks that activate different segments of the spinal cord.
MRI is a very sensitive imaging modality, however with relatively low specificity. The aim of this work was to determine the potential of image post-processing using 3D-tissue segmentation technique for identification and quantitative characterization of intracranial lesions primarily in the white matter. Forty subjects participated in this study: 28 patients with brain multiple sclerosis (MS), 6 patients with subcortical ischemic vascular dementia (SIVD), and 6 patients with lacunar white matter infarcts (LI).
View Article and Find Full Text PDFMagnetic resonance imaging is the method of choice for non-invasive detection and evaluation of tumors of the central nervous system. However, discrimination of tumor boundaries from normal tissue, and the evaluation of heterogeneous lesions have proven to be limitations in traditional magnetic resonance imaging. The use of post-image acquisition processing techniques, such as multispectral tissue segmentation analysis, may provide more accurate clinical information.
View Article and Find Full Text PDFJ Comput Assist Tomogr
December 1999
One of the major sources of image nonuniformity in the high field MR scanners is the radiofrequency (RF) coil inhomogeneity. It degrades conspicuity of lesion(s) in the MR images of the brain and surrounding tissues and reduces accuracy of image postprocessing particularly at the edges of the coil. In this investigation, we have devised and tested a simple method to correct for nonuniformity of MR images of the brain at the edges of the RF head coil.
View Article and Find Full Text PDFThe aim of this work was to develop a fast and accurate method for tissue segmentation in magnetic resonance imaging (MRI) based on a four-dimensional (4D) feature map and compare it with that derived from a 3D feature map. High-resolution MRI was performed in 5 normal individuals, in 12 patients with brain multiple sclerosis (MS), and 9 patients with malignant brain tumors. Three inputs (proton-density, T2-weighted fast spin-echo, and T1-weighted spin-echo MR images) were routinely utilized.
View Article and Find Full Text PDF