Publications by authors named "S Vijayakrishnan"

Autonomous laboratories can accelerate discoveries in chemical synthesis, but this requires automated measurements coupled with reliable decision-making. Most autonomous laboratories involve bespoke automated equipment, and reaction outcomes are often assessed using a single, hard-wired characterization technique. Any decision-making algorithms must then operate using this narrow range of characterization data.

View Article and Find Full Text PDF

Many viruses are pleomorphic in shape and size, with pleomorphism often thought to correlate with infectivity, pathogenicity, or virus survival. For example, influenza and respiratory syncytial virus particles range in size from small spherical virions to filaments reaching many micrometers in length. We have used a pressure vessel model to investigate how the length and width of spherical and filamentous virions can vary for a given critical stress and fluorescence super-resolution microscopy along with image analysis tools to fit imaged influenza viruses to the model.

View Article and Find Full Text PDF

Cryo-electron tomography (cryo-ET) has emerged as a powerful tool in structural biology to study viruses and is undergoing a resolution revolution. Enveloped viruses comprise several RNA and DNA pleomorphic viruses that are pathogens of clinical importance to humans and animals. Considerable efforts in cryogenic correlative light and electron microscopy (cryo-CLEM), cryogenic focused ion beam milling (cryo-FIB), and integrative structural techniques are helping to identify virus structures within cells leading to a rise of in situ discoveries shedding light on how viruses interact with their hosts during different stages of infection.

View Article and Find Full Text PDF

The 5/2 fractional quantum Hall effect in the second Landau level of extremely clean two-dimensional electron gases has attracted much attention due to its topological order predicted to host quasiparticles that obey non-Abelian quantum statistics and could serve as a basis for fault-tolerant quantum computations. While previous works have establish the Fermi liquid (FL) nature of its putative composite fermion (CF) normal phase, little is known regarding its thermodynamics properties and as a result its effective mass is entirely unknown. Here, we report on time-resolved specific heat measurements at filling factor 5/2, and we examine the ratio of specific heat to temperature as a function of temperature.

View Article and Find Full Text PDF