Objective: Glucocorticoid resistance is a rare endocrine disease caused by variants of the NR3C1 gene encoding the glucocorticoid receptor (GR). We identified a novel heterozygous variant (GRR569Q) in a patient with uncommon reversible glucocorticoid resistance syndrome.
Methods: We performed ex vivo functional characterization of the variant in patient fibroblasts and in vitro through transient transfection in undifferentiated HEK 293T cells to assess transcriptional activity, affinity, and nuclear translocation.
Central serous chorioretinopathy (CSCR) belongs to the pachychoroid spectrum, a pathological phenotype of the choroidal vasculature, in which blood flow is under the choroidal nervous system (ChNS) regulation. The pathogenesis of CSCR is multifactorial, with the most recognised risk factor being intake of glucocorticoids, which activate both the gluco- and the mineralocorticoid (MR) receptors. As MR over-activation is pathogenic in the retina and choroid, it could mediate the pathogenic effects of glucocorticoids in CSCR.
View Article and Find Full Text PDFGlucocorticoids (GCs) exert potent antiproliferative and anti-inflammatory properties, explaining their therapeutic efficacy for skin diseases. GCs act by binding to the GC receptor (GR) and the mineralocorticoid receptor (MR), co-expressed in classical and non-classical targets including keratinocytes. Using knockout mice, we previously demonstrated that GR and MR exert essential nonoverlapping functions in skin homeostasis.
View Article and Find Full Text PDFBackground: We studied the ability of the nonsteroidal MR (mineralocorticoid receptor) antagonist finerenone to attenuate vascular remodeling and pulmonary hypertension using two complementary preclinical models (the monocrotaline and sugen/hypoxia rat models) of severe pulmonary hypertension.
Methods: We first examined the distribution pattern of MR in the lungs of patients with pulmonary arterial hypertension (PAH) and in monocrotaline and sugen/hypoxia rat lungs. Subsequent studies were performed to explore the effect of MR inhibition on proliferation of pulmonary artery smooth muscle cells derived from patients with idiopathic PAH.