Phthalates, categorized as a main constituent of endocrine-disrupting chemicals (EDCs), are present in polymeric products. These substances can enter the environment through several pathways, including improper handling, which leads to their presence in toilet water, floor washings, surface runoff, and landfill leachate. This study focuses on the performance analysis of nanocomposite materials made of polymer (polypyrrole), quasi-metal (graphene oxide), and biochar (from palmyra seed) for the elimination of diethyl phthalates (DEP) from aqueous environments.
View Article and Find Full Text PDFThe presence of pharmaceutical compounds in aqueous environments has become a growing concern due to their potential adverse effects on ecosystems and human health. In this work, synthesis of a novel bio based nanocomposite using a biowaste, palm seed is employed for the preparation of biochar. The bio derived nanocomposite consist of polypyrrole (Ppy), graphene oxide (GO), and biochar, is employed for the Carbamazepine (CBZ) removal.
View Article and Find Full Text PDFLead is a widely used heavy metal which is highly toxic to kidney, nervous system and reproductive system. A special featured polypyrrole based adsorbent, with admirable salinity confrontation, environmental stability and reusability, was engaged to remove lead ions from aqueous solution. The advantages of using polypyrrole based adsorbent for heavy metal removal are: ease of synthesis, biocompatibility and high metal selectivity.
View Article and Find Full Text PDF