Publications by authors named "S Vagle"

Increased ship traffic due to climate change increases underwater noise in the Arctic. Therefore, accurate measurements of underwater radiated noise are necessary to map marine sound and quantify shipping's impact on the Arctic ecosystem. This paper presents a method to calculate opportunistic source levels (SLs) using passive acoustic data collected at six locations in the Western Canadian Arctic from 2018 to 2022.

View Article and Find Full Text PDF

Failures of mine tailings storage facilities (TSF) can have profound and long-lasting effects on the downstream receiving environment. Virtually all spills to date have been into river systems without large lakes that may buffer downstream impacts. In August 2014, the failure of the Mount Polley copper (Cu)-gold mine TSF in British Columbia, Canada, released ~25 × 10 m of water and solids; globally, this is the second largest TSF spill in history.

View Article and Find Full Text PDF

In recent decades shipping traffic has increased, leading to elevated underwater ambient noise levels. Research has been conducted on the noise generated by ships underway, however little is known about potential noise from ships at anchor. In coastal regions, commercial vessels can seek anchorages prior to entering port, leading to concern regarding the impacts on the soundscape and marine ecosystems.

View Article and Find Full Text PDF

Passive acoustic recorders were deployed over two years (February 2018-March 2020) in the Salish Sea to monitor the underwater soundscape. Seasonal cycles and differences between the open Strait of Juan de Fuca and protected inner waterways were pervasive during this period. A comparison between natural and human-derived noise demonstrated the impact of anthropogenic activities on the sound field.

View Article and Find Full Text PDF

Anthropogenic noise associated with shipping has emerged as a major disruptor of aquatic animal behavior worldwide. The Arctic marine realm has historically experienced little noise-generating human activity; however, the continual loss of sea ice has facilitated a dramatic increase in shipping activity. Here, we use a combination of acoustic telemetry and modeling of ship noise to examine the temporospatial habitat use of key Arctic forage fish, Arctic cod (Boreogadus saida) in the presence and absence of vessels in Resolute Bay, Nunavut, Canada.

View Article and Find Full Text PDF