Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide, constituting around 30-40% of all cases. Almost 60% of patients develop relapse of refractory DLBCL. Among the reasons for the therapy failure, tumour microenvironment (TME) components could be involved, including tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs), cancer-associated fibroblasts (CAFs), and different subtypes of cytotoxic CD8+ cells and T regulatory cells, which show complex interactions with tumour cells.
View Article and Find Full Text PDFSummary: Kinetic models of metabolism are crucial to understand the inner workings of cell metabolism. By taking into account enzyme regulation, detailed kinetic models can provide accurate predictions of metabolic fluxes. Comprehensive consideration of kinetic regulation requires highly parameterized non-linear models, which are challenging to build and fit using available modelling tools.
View Article and Find Full Text PDFBackground: Necrotizing enterocolitis (NEC) is a multifactorial disease that predominantly affects premature neonates. Intestinal dysbiosis plays a critical role in NEC pathogenesis in premature neonates. The main risk factor for NEC in term infants is mesenteric hypoperfusion associated with ductal-dependent congenital heart disease (CHD) that eventually leads to intestinal ischemia.
View Article and Find Full Text PDFIn this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the EuLnCuSe composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups (structure type BaMnS for EuLaCuSe and structure type EuCuS for EuLnCuSe, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and (structure type KZrCuS for EuLnCuSe, where Ln = Tm, Yb and Lu).
View Article and Find Full Text PDFPseudomonas putida is evolutionarily endowed with features relevant for bioproduction, especially under harsh operating conditions. The rich metabolic versatility of this species, however, comes at the price of limited formation of acetyl-coenzyme A (CoA) from sugar substrates. Since acetyl-CoA is a key metabolic precursor for a number of added-value products, in this work we deployed an in silico-guided rewiring program of central carbon metabolism for upgrading P.
View Article and Find Full Text PDF