Publications by authors named "S V Vakulenko"

Antibiotic resistance in bacteria is a major global health concern. The wide spread of carbapenemases, bacterial enzymes that degrade the last-resort carbapenem antibiotics, is responsible for multidrug resistance in bacterial pathogens and has further significantly exacerbated this problem. is one of the leading nosocomial pathogens due to the acquisition and wide dissemination of carbapenem-hydrolyzing class D β-lactamases, which have dramatically diminished available therapeutic options.

View Article and Find Full Text PDF

Carbapenem antibiotics are used as a last-resort treatment for infections caused by multidrug-resistant bacteria. The wide spread of carbapenemases in Gram-negative bacteria has severely compromised the utility of these drugs and represents a serious public health threat. To combat carbapenemase-mediated resistance, new antimicrobials and inhibitors of these enzymes are urgently needed.

View Article and Find Full Text PDF

This manuscript presents an algorithmic approach to cooperation in biological systems, drawing on fundamental ideas from statistical mechanics and probability theory. Fisher's geometric model of adaptation suggests that the evolution of organisms well adapted to multiple constraints comes at a significant complexity cost. By utilizing combinatorial models of fitness, we demonstrate that the probability of adapting to all constraints decreases exponentially with the number of constraints, thereby generalizing Fisher's result.

View Article and Find Full Text PDF

This research illustrates that complex dynamics of gene products enable the creation of any prescribed cellular differentiation patterns. These complex dynamics can take the form of chaotic, stochastic, or noisy chaotic dynamics. Based on this outcome and previous research, it is established that a generic open chemical reactor can generate an exceptionally large number of different cellular patterns.

View Article and Find Full Text PDF

The wide spread of carbapenem-hydrolyzing β-lactamases in Gram-negative bacteria has diminished the utility of the last-resort carbapenem antibiotics, significantly narrowing the available therapeutic options. In the family, which includes many important clinical pathogens such as and , production of class D β-lactamases from the OXA-48-type family constitutes the major mechanism of resistance to carbapenems. To address the public health threat posed by these enzymes, novel, effective therapeutics are urgently needed.

View Article and Find Full Text PDF