Publications by authors named "S V Stolyar"

Although the 16S (and 18S) rRNA gene has been an essential tool in classifying prokaryotes, using a single locus to revise bacteria taxonomy can introduce unwanted artifacts. There was a recent proposition to split the Methylobacterium genus, which contains diverse plant-associated strains and is important for agriculture and biotechnology, into two genera. Resting strongly on the phylogeny of 16S rRNA, 11 species of Methylobacterium were transferred to a newly proposed genus Methylorubrum.

View Article and Find Full Text PDF

Exosomes are a type of membrane vesicle secreted into the extracellular medium by most cell types. They have a great potential for clinical practice as noninvasive biomarkers for diagnosis of various diseases, prognosis, and monitoring of therapy, which stimulates the development of simple methods for isolating exosomes from biological fluids. A novel affine material based on aminosilanized superparamagnetic core‒shell nanoparticles for fast isolation of urinary exosomes is reported.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) are considered as the most biocompatible magnetic materials suitable for biomedical applications. Nevertheless, there are many evidences of their toxicity for living organisms and partially neurotoxicity. The central nervous system is protected from undesirable substances circulating in the bloodstream by the blood-brain barrier (BBB).

View Article and Find Full Text PDF

We studied the effect of biogenic ferrihydrite nanoparticles synthesized as a result of the culturing of Klebsiella oxytoca on Wistar rats with experimental toxic hemolytic anemia. The pathology was simulated by single intraperitoneal injection of phenylhydrazine hydrochloride. On day 4, the functional parameters of erythrocytes in rats corresponded to the state of toxic hemolytic anemia.

View Article and Find Full Text PDF

Since its first demonstration over 100 years ago, scattering-based light-sheet microscopy has recently re-emerged as a key modality in label-free tissue imaging and cellular morphometry; however, scattering-based light-sheet imaging with subcellular resolution remains an unmet target. This is because related approaches inevitably superimpose speckle or granular intensity modulation on to the native subcellular features. Here, we addressed this challenge by deploying a time-averaged pseudo-thermalized light-sheet illumination.

View Article and Find Full Text PDF