Publications by authors named "S V Stepanov"

While morphological and functional traits enable hydrophytes to survive under waterlogging and partial or complete submergence, the data on responses of psammophytes-sand plants-to flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic apparatus and the synthesis of alcohol dehydrogenase (ADH), heat shock proteins 70 (HSP70), and ethylene in seedlings of psammophytes and using electron microscopy, chlorophyll fluorescence induction, and biochemical methods. It was found that seedlings growing under soil flooding differed from those growing in stationary conditions with such traits as chloroplast ultrastructure, pigment content, chlorophyll fluorescence induction, and the dynamics of ADH, HSP, and ethylene synthesis.

View Article and Find Full Text PDF

We consider a two-dimensional system of elongated particles driven over a landscape containing randomly placed pinning sites. For varied pinning site density, external drive magnitude, and particle elongation, we find a wide variety of dynamic phases, including random structures, stripe or combed phases with nematic order, and clogged states. The different regimes can be identified by examining nematic ordering, cluster size, number of pinned particles, and transverse diffusion.

View Article and Find Full Text PDF

Zirconium (Zr) alloys are utilized as structural components for the cores of nuclear reactors due to the excellent combination of their mechanical properties and corrosion resistance under intense neutron irradiation conditions in water. The characteristics of microstructures formed during heat treatments play a crucial role in obtaining the operational performance of parts made from Zr alloys. This study investigates the morphological features of (α + β)-microstructures in the Zr-2.

View Article and Find Full Text PDF

Titanium alloys based on orthorhombic titanium aluminide TiAlNb are promising refractory materials for aircraft engine parts in the operating temperature range from 600-700 °C. Parts made of TiAlNb-based alloys by traditional technologies, such as casting and metal forming, have not yet found wide application due to the sensitivity of processability and mechanical properties in chemical composition and microstructure compared with commercial solid-solution-based titanium alloys. In the last three decades, metal additive manufacturing (MAM) has attracted the attention of scientists and engineers for the production of intermetallic alloys based on TiAlNb.

View Article and Find Full Text PDF