Publications by authors named "S V Sokolenko"

Although bioactive peptides have traditionally been studied for their health-promoting qualities in the context of nutrition and medicine, the past twenty years have seen a steady increase in their application to cell culture media optimization. Complex natural sources of bioactive peptides, such as hydrolysates, offer a sustainable and cost-effective means of promoting cellular growth, making them an essential component of scaling-up cultivated meat production. However, the sheer diversity of hydrolysates makes product selection difficult, highlighting the need for functional characterization.

View Article and Find Full Text PDF

Cultivated meat products, generated by growing isolated skeletal muscle and fat tissue, offer the promise of a more sustainable and ethical alternative to traditional meat production. However, with cell culture media used to grow the cells accounting for 55-95% of the overall production cost, achieving true sustainability requires significant media optimization. One means of dealing with these high costs is the use of low-cost complex additives such as hydrolysates to provide a wide range of nutrients, from small molecules (metabolites) to growth factors and peptides.

View Article and Find Full Text PDF

It has been shown that atrial natriuretic peptide (ANP) and its high affinity receptor (NPRA) are involved in the formation of ventricular conduction system (VCS). Inherited genetic variants in fatty acid oxidation (FAO) genes are known to cause conduction abnormalities in newborn children. Although the effect of ANP on energy metabolism in noncardiac cell types is well documented, the role of lipid metabolism in VCS cell differentiation via ANP/NPRA signaling is not known.

View Article and Find Full Text PDF
Article Synopsis
  • CHKB is a gene that codes for an enzyme crucial for producing phosphatidylcholine, a key component of cell membranes.
  • Inactivating this gene in mice leads to a type of muscular dystrophy, but intriguingly, levels of phosphatidylcholine don’t significantly change throughout the disease.
  • The study shows that affected muscles initially struggle to break down fatty acids for energy, which leads to an increase in fat storage; however, using specific treatments can help restore energy production and protect muscle cells from damage.
View Article and Find Full Text PDF

The CHKB gene encodes choline kinase β, which catalyzes the first step in the biosynthetic pathway for the major phospholipid phosphatidylcholine. Homozygous loss-of-function variants in human CHKB are associated with a congenital muscular dystrophy. Dilated cardiomyopathy is present in some CHKB patients and can cause heart failure and death.

View Article and Find Full Text PDF