Publications by authors named "S V Rytov"

The changes in CH and CHH during sulphate-dependent anaerobic oxidation of methane (AOM) were described using dynamic modelling. The batch sulphate-dependent AOM at the nearly linear dynamics of methane oxidation with different enriched cultures originating from three marine sediments was simulated. The traditional Rayleigh equation for carbon and hydrogen stable isotopes in methane was derived from the basic dynamic isotope equation.

View Article and Find Full Text PDF

The purpose of this study was to describe the dynamics of anaerobic oxidation of methane (AOM) coupled with sulfate reduction (SR) using experimental data from a continuous incubation experiments published earlier in order to show that formation of consortia of anaerobic archaea (ANME) and Desulfosarcina-like bacteria (DSS) may have a significant effect on sulfur isotope fractionation. The dynamic simulation of reversible AOM by ANME coupled with SR by DSS was performed. This simulation took into account biomass growth and fractionation of stable isotopes of sulfur.

View Article and Find Full Text PDF

We described mathematically the process of peat methanization in a boreal mesotrophic fen. Gaseous and dissolved CH and CO as well as their δC signatures were considered in the dynamic equations for incubation bottles. In accordance with the model, acetate, H, and CO were produced during cellulose hydrolysis and acidogenesis.

View Article and Find Full Text PDF

To identify predominant metabolic pathway for cellulose methanization new equations that take into account dynamics of 13C are added to the basic model of cellulose methanization. The correct stoichiometry of hydrolysis, acidogenesis, acetogenesis and methanogenesis steps including biomass is considered. Using experimental data by Laukenmann et al.

View Article and Find Full Text PDF

The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.

View Article and Find Full Text PDF