The production of cement is associated with the emissions of dust and particulate matter, nitrogen oxides (NO), sulfur dioxide (SO), carbon monoxide (CO), heavy metals, and volatile organic compounds into the environment. People living near cement production facilities are potentially exposed to these pollutants, including carcinogens, although at lower doses than the factory workers. In this study we focused on the distribution of fine particulate matter, the composition, size patterns, and spatial distribution of the emissions from Spassk cement plant in Primorsky Krai, Russian Federation.
View Article and Find Full Text PDFThe understanding of the desorption mechanism in surface-assisted laser desorption/ionization (SALDI) remains incomplete because there are numerous types of SALDI materials with a broad range of physical and chemical properties, many of which impact the ultimate analytical performance in terms of signal generation. In this study, the chemical thermometer molecule, benzylpyridinium chloride, is applied to investigate the desorption process of SALDI using electrospun nanofibrous polymer and polymer composite substrates. The ion desorption efficiency was inversely related to the ion internal energy, which could not be fully explained by a thermal desorption mechanism.
View Article and Find Full Text PDFEnhanced-fluidity, reversed-phase liquid chromatography was developed using custom instrumentation for separation and characterization of intact KRas proteins and tryptic peptides. The KRas, HRas and NRas function as GDP-GTP regulated binary switches in many signalling pathways, and mutations in Ras proteins are frequently found in human cancers and represent poor prognosis markers for patients. Mutations of the KRas isoform constitute some of the most common aberrations among all human cancers and intensive drug discovery efforts have been directed toward targeting the KRas protein.
View Article and Find Full Text PDFThis research article investigates the particulate matter originated from the exhaust emissions of 20 bus models, within the territory of Vladivostok, Russian Federation. The majority of evaluated buses (17 out of 20) had emissions of large particles with sizes greater than 400 μm, which account for more than 80% of all measured particles. The analysis of the elemental composition showed that the exhaust emissions contained Al, Cd, Cu, Fe, Mg, Ni, Pb, and Zn, with the concentration of Zn prevailing in all samples by two to three orders of magnitude higher than the concentrations of the other elements.
View Article and Find Full Text PDF