In recent advancements within sensing technology, driven by the Internet of Things (IoT), significant impacts are observed on health sector applications, notably through wearable electronics like electronic tattoos (e-tattoos). These e-tattoos, designed for direct contact with the skin, facilitate precise monitoring of vital physiological parameters, including body heat, a critical indicator for conditions such as inflammation and infection. Monitoring these indicators can be crucial for early detection of chronic conditions, steering toward proactive healthcare management.
View Article and Find Full Text PDFThis study investigates the molecular responses to heat stroke in young and old patients by comparing whole-genome transcriptomes between age groups. We analyzed transcriptomic profiles from patients categorized into two age-defined cohorts: young (mean age = 44.9 ± 6 years) and old (mean age = 66.
View Article and Find Full Text PDFObjective: Rheumatoid arthritis (RA) is a chronic inflammatory condition that, despite available approaches to manage the disease, lacks an efficient treatment and timely diagnosis. Using the most advanced omics technique, metabolomics and proteomics approach, we explored varied metabolites and proteins to identify unique metabolite-protein signatures involved in the disease pathogenesis of RA.
Methods: Untargeted metabolomics (n = 20) and proteomics (n = 60) of RA patients' plasma were carried out by HPLC/LC-MS/MS and SWATH, respectively and analyzed by Metaboanalyst.
Inherently low concentrations of zinc (Zn), iron (Fe), iodine (I), and selenium (Se) in wheat ( L.) grains represent a major cause of micronutrient malnutrition (hidden hunger) in human populations. Genetic biofortification represents a highly useful solution to this problem.
View Article and Find Full Text PDFNeuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied.
View Article and Find Full Text PDF