Additive manufacturing (AM) defects present significant challenges in fiber-reinforced thermoplastic composites (FRTPCs), directly impacting both their structural and non-structural performance. In structures produced through material extrusion-based AM, specifically fused filament fabrication (FFF), the layer-by-layer deposition can introduce defects such as porosity (up to 10-15% in some cases), delamination, voids, fiber misalignment, and incomplete fusion between layers. These defects compromise mechanical properties, leading to reduction of up to 30% in tensile strength and, in some cases, up to 20% in fatigue life, severely diminishing the composite's overall performance and structural integrity.
View Article and Find Full Text PDFFibre breaks govern the strength of unidirectional composite materials under tension. The progressive development of fibre breaks is studied using in situ X-ray computed tomography, especially with synchrotron radiation. However, even with synchrotron radiation, the resolution of the time-resolved in situ images is not sufficient for a fully automated analysis of continuous mechanical deformations.
View Article and Find Full Text PDFRecently, polymeric nanofiber veils have gained lot of interest for various industrial and research applications. Embedding polymeric veils has proven to be one of the most effective ways to prevent delamination caused by the poor out-of-plane properties of composite laminates. The polymeric veils are introduced between plies of a composite laminate, and their targeted effects on delamination initiation and propagation have been widely studied.
View Article and Find Full Text PDFTemperature dependence of electrical conductivity/resistivity of CNT networks (dry or impregnated), which is characterised by a temperature coefficient of resistance (TCR), is experimentally observed to be negative, especially for the case of aligned CNT (A-CNT). The paper investigates the role of three phenomena defining the TCR, temperature dependence of the intrinsic conductivity of CNTs, of the tunnelling resistance of their contacts, and thermal expansion of the network, in the temperature range 300-400 K. A-CNT films, created by rolling down A-CNT forests of different length and described in Lee et al.
View Article and Find Full Text PDFElectrical conductivity and piezoresistivity of carbon nanotube (CNT) nanocomposites are analyzed by nodal analysis for aligned and random CNT networks dependent on the intrinsic CNT conductivity and tunneling barrier values. In the literature, these parameters are assigned with significant uncertainty; often, the intrinsic resistivity is neglected. We analyze the variability of homogenized conductivity, its sensitivity to deformation, and the validity of the assumption of zero intrinsic resistivity.
View Article and Find Full Text PDF