This review provides a comprehensive examination of recent developments in both neurofeedback and brain-computer interface (BCI) within the medical field and rehabilitation. By analyzing and comparing results obtained with various tools and techniques, we aim to offer a systematic understanding of BCI applications concerning different modalities of neurofeedback and input data utilized. Our primary objective is to address the existing gap in the area of meta-reviews, which provides a more comprehensive outlook on the field, allowing for the assessment of the current landscape and developments within the scope of BCI.
View Article and Find Full Text PDFBackground: Our study expand upon a large body of evidence in the field of neuropsychiatric imaging with cognitive, affective and behavioral tasks, adapted for the functional magnetic resonance imaging (MRI) (fMRI) experimental environment. There is sufficient evidence that common networks underpin activations in task-based fMRI across different mental disorders.
Aim: To investigate whether there exist specific neural circuits which underpin differential item responses to depressive, paranoid and neutral items (DN) in patients respectively with schizophrenia (SCZ) and major depressive disorder (MDD).
We present a novel method for analyzing brain functional networks using functional magnetic resonance imaging data, which involves utilizing consensus networks. In this study, we compare our approach to a standard group-based method for patients diagnosed with major depressive disorder (MDD) and a healthy control group, taking into account different levels of connectivity. Our findings demonstrate that the consensus network approach uncovers distinct characteristics in network measures and degree distributions when considering connection strengths.
View Article and Find Full Text PDFSensorimotor integration (SI) brain functions that are vital for everyday life tend to decline in advanced age. At the same time, elderly people preserve a moderate level of neuroplasticity, which allows the brain's functionality to be maintained and slows down the process of neuronal degradation. Hence, it is important to understand which aspects of SI are modifiable in healthy old age.
View Article and Find Full Text PDFExperiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study.
View Article and Find Full Text PDF