We clarify misunderstandings of Walker et al. (Walker 2024 21, 20240367 (doi:10.1098/rsif.
View Article and Find Full Text PDFMolecular assembly indices, which measure the number of unique sequential steps theoretically required to construct a three-dimensional molecule from its constituent atomic bonds, have been proposed as potential biosignatures. A central hypothesis of assembly theory is that any molecule with an assembly index ≥15 found in significant local concentrations represents an unambiguous sign of life. We show that abiotic molecule-like heteropolyanions, which assemble in aqueous solution as precursors to some mineral crystals, range in molecular assembly indices from 2 for HCO or Si(OH) groups to as large as 21 for the most complex known molecule-like subunits in the rare minerals ewingite and ilmajokite.
View Article and Find Full Text PDFFlexible crystal() structures, which exhibit() single-crystal()-to-single-crystal() (SCSC) transformations(), are attracting attention() in many applied aspects: magnetic() switches, catalysis, ferroelectrics and sorption. Acid treatment() for titanosilicate material() AM-4 and natural() compounds with the same structures led to SCSC transformation() by loss() Na, Li and Zn cations with large structural() changes (20% of the unit()-cell() volume()). The conservation() of crystallinity through complex() transformation() is possible due() to the formation() of a strong hydrogen bonding() system().
View Article and Find Full Text PDFThrough the combination of low-temperature hydrothermal synthesis and room-temperature evaporation, a synthetic phase similar in composition and crystal structure to the Earth's most complex mineral, ewingite, was obtained. The crystal structures of both natural and synthetic compounds are based on supertetrahedral uranyl-carbonate nanoclusters that are arranged according to the cubic body-centered lattice principle. The structure and composition of the uranyl carbonate nanocluster were refined using the data on synthetic material.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2022
Topological analysis of the heteropolyhedral MT framework (where M and T are octahedral and tetrahedral cations, respectively) in the eudialyte-type structure and its derivatives was performed based on a natural tiling analysis of the 3D cation. To analyze the migration paths of sodium cations in these structures, the Voronoi method was used. The parental eudialyte-type MT framework is formed by isolated ZO octahedra, six-membered [M(1)O] rings of edge-sharing M(1)O octahedra, and two kinds of rings of tetrahedra, [SiO] and [SiO].
View Article and Find Full Text PDF