We studied the influence of hypoxic-hypercapnic environment under the effect of hypothermia (artificial hibernation) on fatty acids spectrum of inner mitochondrial membrane (IMM) lipids of rat cardiomyocytes and hepatocytes. Specific for cellular organelles redistribution of IMM fatty acids was determined. It led to the reduction of total amount of saturated fatty acids (SFAs) and increase of unsaturated fatty acids (UFAs) in cardiomyocytes and to the increase of SFAs and decrease of UFAs in hepatocytes.
View Article and Find Full Text PDFThe novel ideas of fundamental role of mitochondria in the maintenance of viability of malignant cells have been reviewed. The modern state of research is considered in detail, including: mitochondrial control of the cellular redox state, sites of reactive oxygen species (ROS) production in inner mitochondrial membrane and antioxidant protection systems. Specificities of the structural-functional mitochondrial remodelling in malignant tumors, the mechanisms of the energy metabolism reprogramming, enhancement of the ROS production and adaptation to the hypoxic conditions and metabolic stress are analyzed.
View Article and Find Full Text PDFObjective: Study of human erythrocyte DP response under modification by activators and blockers of the functional state of Ca2+-dependent K+ channels under low rate β-radiation.
Materials And Methods: Erythrocytes were isolated from the donor blood. The zeta potential was computed from the value of the cell electrophoretic mobility.
We investigated the energy activity of mitochondria from rat cardiomyocytes under the artificial carbon dioxide hypobiosis, which led to physiological changes in the organism (the decrease of body temperature, the reduction of heart rate, etc.). The respiratory and phosphorylation activities in mitochondria of cardiomyocytes is reduced when using two oxidation substrates (succinate and malate), which characterize the rate of the oxygen consumption by the mitochondria.
View Article and Find Full Text PDFThe activity of enzymes of the respiratory chain and structural-dynamic properties of the inner mitochondrial membrane (IMM) of sarcoma 37 (S37) in mice under sodium dichloroacetate (SDA) administration in a daily dose of 86 mg/kg of body weight starting from the 2nd day after tumor transplantation were investigated. The dynamic and structural state of the IMM components was determined using the fluorescent probes. With S37 growth the intensification of glycolytic metabolism occurred on the background of suppressed functional capacity of mitochondrial respiratory chain enzymes.
View Article and Find Full Text PDF