The structure, phase composition, corrosion and mechanical properties, as well as aspects of biocompatibility in vitro and in vivo, of a Zn-1%Mg-0.1%Dy alloy after equal-channel angular pressing (ECAP) were studied. The structure refinement after ECAP leads to the formation of elongated α-Zn grains with a width of ~10 µm and of Mg- and Dy-containing phases.
View Article and Find Full Text PDFA study of the effect of rotary swaging (RS) on the microstructure and properties of the pre-extruded and pre-quenched Cu-0.5%Cr-0.08%Zr alloy was performed.
View Article and Find Full Text PDFIn this work, a Fe-Mn-Pd alloy was produced by methods of equal channel angular pressing (ECAP) in order to obtain an alloy with a high rate of degradation for the development of biodegradable devices. Special efforts were made to the obtaining of an ultrafine-grained structure of alloys in a fully austenitic state at temperatures of 300 °C and 450 °C. Further investigation of its effect on the corrosion rate and mechanical properties was carried out.
View Article and Find Full Text PDFThe effect of high-pressure torsion (HPT) on the microstructure, phase composition, mechanical characteristics, degradation rate, and bioactive properties of the Zn-1%Mg alloy is studied. An ultrafine-grained (UFG) structure with an average grain size of α-Zn equal to 890 ± 26 nm and grains and subgrains of the MgZn and MgZn phases with a size of 50-100 nm are formed after HPT. This UFG structure leads to an increase in the ultimate tensile strength of the alloy by ~3 times with an increase in elongation to 6.
View Article and Find Full Text PDFSovrem Tekhnologii Med
March 2022
Unlabelled: was to study the biodegradation characteristics and rate of magnesium alloys .
Materials And Methods: We studied the biodegradation of magnesium alloys Mg-Zn-Ca and WE43 (Mg-Y-Nd-Zr) in homogenized (initial) condition and after strengthening by mechanical processing using equal channel angular pressing (ECAP). The samples were incubated in a model system based on reference fetal calf serum (FCS) in the static and dynamic modes.