The study of biomarkers in biofluids and tissues expanded our understanding of the biological processes that drive physiological and functional manifestations of aging. However, most of these studies were limited to examining one biological compartment, an approach that fails to recognize that aging pervasively affects the whole body. The simultaneous modeling of hundreds of metabolites and proteins across multiple compartments may provide a more detailed picture of healthy aging and point to differences between chronological and biological aging.
View Article and Find Full Text PDFIt is currently unknown why some individuals with Parkinson's disease (PD) go on to develop dementia [Parkinson's disease dementia (PDD)], whereas others do not. One possibility is differences in susceptibility to metallomic dysregulation. A previous study of the PDD brain identified substantive perturbations in metal levels, including severe multiregional decreases in Cu.
View Article and Find Full Text PDFWith immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier toward improving care. Multiparametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing the reproducibility and representativeness of findings, while lessening data fragmentation toward harmonization.
View Article and Find Full Text PDF