The yeast strain Pichia pastoris, a producer of humanized F(ab’)2 fragments of rabies-blocking antibodies, has been obtained. Human chaperone BiP coexpression caused a twofold increase of the immunoglobulins secretion level. The use of Fos and Jun zippers in the composition of heavy chains facilitated the dimerization of F(ab’)2 fragments of the shared pool of secreted immunoglobulins up to 75%.
View Article and Find Full Text PDFA new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression.
View Article and Find Full Text PDFThe gene xylE encoding endo-1,4-β-xylanase from the 10th family of glycosyl hydrolases produced by the mycelial fungus Penicillium canescens has been expressed under the control of the strong promoter of the bgaS gene encoding β-galactosidase from P. canescens. As a result, a strain-producer of endoxylanase XylE was developed.
View Article and Find Full Text PDFAmyloids are fibrillar protein aggregates resulting from non-covalent autocatalytic polymerization of various structurally and functionally unrelated proteins. Previously we have selected DNA aptamers, which bind specifically to the in vitro assembled amyloid fibrils of the yeast prionogenic protein Sup35. Here we show that such DNA aptamers can be used to detect SDS-insoluble amyloid aggregates of the Sup35 protein, and of some other amyloidogenic proteins, including mouse PrP, formed in yeast cells.
View Article and Find Full Text PDFAlpha-fetoprotein (AFP) is a biological drug candidate of high medicinal potential in the treatment of autoimmune diseases, cancer, and regenerative medicine. Large-scale production of recombinant human alpha-fetoprotein (rhAFP) is desirable for structural and functional studies and applied research. In this study we cloned and expressed in the secreted form wild-type glycosylated human rhAFP and non-glycosylated mutant rhAFP(0) (N233S) in the yeast strain Saccharomyces cerevisiae with multiple chromosome-integrated synthetic human AFP genes.
View Article and Find Full Text PDF