Multicore fibers are promising structures with specific light propagation properties, which can be managed to benefit several applications in optical communications, fiber lasers and amplifiers, high-resolution imaging, and fiber-based sensors. The current use of multicore fibers in laser technology is mainly focused on in-phase coherent beam combining in far-field regions (out-cavity) using bulk optical elements. However, this approach is challenging in terms of the power scalability of all-fiber lasers (intra-cavity), particularly with using low-gain media, where it is needed to provide mode-coupling (supermode propagation) stability along relatively long lengths.
View Article and Find Full Text PDFPolarization-dependent gain (PDG) effect was studied in a conventional core-pumping configuration of bismuth-doped fiber amplifiers (BDFAs) based on PANDA-type phospho- and germanosilicate core fibers. The PDG value was determined as the gain difference between the orthogonal signal polarizations, which was found to be in range of 2.5-3 dB at total gain of >20 dB in such BDFAs.
View Article and Find Full Text PDFIn this Letter, we investigated the potential scalability of output power of a cladding-pumped laser and a power amplifier (booster) based on a multimode Bi-doped fiber (BDF) using the mode-selection approach. We fabricated the multimode double-clad graded-index (GRIN) fiber with a confined Bi-doped germanosilicate glass core with a diameter of ≈30 and ≈60 µm. Using femtosecond (fs) inscription technology with high spatial resolution, Bragg gratings of a special transverse structure allowing the selection of low-order modes were written into the core of BDFs.
View Article and Find Full Text PDFBismuth-doped fibers (BDFs) are considered nowadays as an essential part of the development of novel optical amplifiers, which can provide a significant upgrade to existing fiber optic telecommunication systems, securing multiband data transmission. In this paper, a series of BDF amplifiers (BDFAs) for O-, E-, and S-telecom bands based on a cladding pumping scheme using low-cost multimode semiconductor laser diodes at a wavelength of 0.7-0.
View Article and Find Full Text PDFFor the first time, to the best of the authors' knowledge, a cladding-pumped bismuth-doped fiber laser (BDFL) is demonstrated. A "home-made" Bi-doped germanosilicate fiber with a 125 µm circular outer cladding made of fused silica and coated by a low refractive index polymer is used as an active medium pumped by commercial multimode laser diodes with a total output power of 25 W at 808 nm. We find that the BDFL with a free-running cavity (when feedback is provided by ≈4% back reflection from two bare right-angle cleaved fiber ends) composed of a 100-m-long bismuth-doped fiber is capable of emitting at a wavelength of 1440 nm.
View Article and Find Full Text PDF