Publications by authors named "S Uroz"

Unlabelled: While mineral weathering (MWe) plays a key role in plant growth promotion and soil fertility, the molecular mechanisms and the genes used by bacteria to weather minerals remain poorly characterized. Acidification-based dissolution is considered the primary mechanism used by bacteria. This mechanism is historically associated with the conversion of glucose to protons and gluconic acid through the action of particular glucose dehydrogenases (GDH) dependent on the pyrroquinoline quinone (PQQ) cofactor.

View Article and Find Full Text PDF

Bacterial strain H4R21 was isolated from beech rhizosphere soil sampled in the forest experimental site of Montiers (Meuse, France). It effectively weathers minerals, hydrolyses chitin and produces quorum sensing signal molecules. The strain is aerobic and Gram-stain-negative.

View Article and Find Full Text PDF

We present the draft genome sequence of sp. strain H4R21, isolated from the rhizosphere of in the forest experimental site of Montiers (France). This genome features coding capacity for plant growth promotion, such as the ability to solubilize minerals, to produce siderophores and antifungal secondary metabolites.

View Article and Find Full Text PDF

The successful large-scale cultivation of morel mushrooms () requires a comprehensive understanding of the soil bacterial communities associated with morel-farming beds, as the interactions between fungi and bacteria play a crucial role in shaping the soil microbiome. In this study, we investigated the temporal distribution and ecological characteristics of soil bacteria associated with morel fruiting bodies at different stages, specifically the conidial and primordial stages, under two cropping regimes, non-continuous cropping (NCC) and continuous cropping (CC). Our findings revealed a significant reduction in the yield of morel primordia during the third year following 2 years of CC (0.

View Article and Find Full Text PDF

To mobilize nutrients entrapped into minerals and rocks, heterotrophic bacteria living in nutrient-poor environments have developed different mechanisms based mainly on acidolysis and chelation. However, the genetic bases of these mechanisms remain unidentified. To fill this gap, we considered the model strain PML1(12) known to be effective at weathering.

View Article and Find Full Text PDF