Knowledge about how and where proteins interact provides a pillar for cell biology. Protein proximity-labeling has emerged as an important tool to detect protein interactions. Biotin-related proximity labeling approaches are by far the most commonly used but may have labeling-related drawbacks.
View Article and Find Full Text PDFJasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are the three major phytohormones coordinating plant defense responses, and all three are implicated in the defense against the fungal pathogen Fusarium oxysporum. However, their distinct modes of action and possible interactions remain unknown, in part because all spatial information on their activity is lacking. Here, we set out to probe this spatial aspect of plant immunity by using live-microscopy with newly developed fluorescence-based transcriptional reporter lines.
View Article and Find Full Text PDFBackground: The Prostatype score (P-score) is a prognostic biomarker that integrates a three-gene (IGFBP3, F3, and VGLL3) signature derived from prostate biopsy samples, with key clinical parameters, including prostate-specific antigen (PSA) levels, Gleason grade, and tumor stage at diagnosis. The test has demonstrated superior predictive accuracy for prostate cancer outcomes compared with traditional risk categorization systems such as D'Amico. Notably, it reclassifies a higher proportion of patients into the low-risk category, making them eligible for active surveillance.
View Article and Find Full Text PDFCell wall remodeling is important for plants to adapt to environmental stress. Under salt stress, cortical microtubules undergo a depolymerization-reassembly process to promote the biosynthesis of stress-adaptive cellulose, but the regulatory mechanisms underlying this process are still largely unknown. In this study, we reveal that FERONIA (FER), a potential cell wall sensor, interacts with COMPANION OF CELLULOSE SYNTHASE1 (CC1) and its closest homolog, CC2, two proteins that are required for cortical microtubule reassembly under salt stress.
View Article and Find Full Text PDFChem Commun (Camb)
November 2024
Starch nanoparticles (sNPs) are considered ideal materials for applications in plant and agricultural sciences aiming at increasing crop yields, and improving resilience due to their non-toxicity, global availability, hydrophilicity, and biodegradability. However, the lack of research on the interaction between sNPs and plant cell walls has limited their application in these fields. Here, we designed Nile blue A-based sNPs (NB@G50-NPs) to investigate the penetration of small-sized sNPs (G50-NPs) through the plant cell wall.
View Article and Find Full Text PDF